11:37 15 мая 2020 Наука

Георгий Базыкин Протокол эпидемии: что может сказать биоинформатика о вспышке nCoV

автор Сколтех, ИППИ РАН
Фото: ссылка

Мы находимся в разгаре эпидемии новой опасной инфекции, но достоверной информации о ней мало. В этой ситуации помогает молекулярная эпидемиология. Ход накопления мутаций эволюционирующим вирусом позволяет оценить важные параметры эпидемии даже при неточных официальных данных. 

Сравнивая организмы друг с другом, эволюционные биологи многое могут узнать про их историю. Больше всего материала для сравнений содержится в нуклеотидных последовательностях, в случае коронавирусов — в последовательностях РНК. Текущая вспышка — пожалуй, первый случай возникновения нового патогена, когда генетические данные есть почти с самого начала. Первая последовательность «нового» коронавируса (nCoV) появилась в открытом доступе всего через несколько недель после описания первых случаев; для сравнения: при вспышке SARS (тяжелого острого респираторного синдрома, также вызываемого коронавирусами) 2002/2003 года первых последовательностей пришлось ждать много месяцев. На рис. 1 показано эволюционное дерево коронавирусов.

 двойной клик - редактировать изображение

Как и на обычных эволюционных деревьях, расстояние между любыми двумя ветвями здесь соответствует времени, прошедшему с момента расхождения двух линий от их общего предка (LCA — last common ancestor). Видно, что ближайший родственник группы вирусных штаммов, давших начало этой вспышке, — это коронавирус, выделенный из летучей мыши; между ним и эпидемическими штаммами совпадает около 96% нуклеотидов. Такая картина может означать, что вирус был передан от летучих мышей, хотя окончательные выводы о пути передачи делать рано; в случае SARS, чтобы разобраться, потребовались годы. (Сведения о еще более близких штаммах из панголина пока есть только в виде пресс-релиза) В любом случае все имеющиеся данные свидетельствуют о том, что инфекция была получена из природного резервуара. Чуть дальше расположены штаммы SARS, с которыми совпадает ~80% нуклеотидов; а еще дальше — штаммы MERS, ближневосточного респираторного синдрома. В последовательностях nCoV нет никаких свидетельств искусственной рекомбинации, вставок необычных фрагментов или какого-либо вмешательства; все сообщения об обратном, появлявшиеся в последние дни на препринтных серверах, были отозваны и/или опровергнуты.

Все линии nCoV более близки друг к другу, чем к любой другой известной вирусной последовательности. Это, по-видимому, означает, что занос был единственным. Не всегда бывает так: например, вспышки MERS в разные годы вызывались новыми переносами из природного резервуара — верблюдов.

Зная скорость эволюции (см. ниже), можно датировать LCA. По-видимому, он существовал в конце ноября — начала декабря. LCA мог быть у единственного человека, который заразил потом других, или же у животного, от которого заразилось несколько человек — это установить трудно. Первые описанные случаи датируются началом декабря; это означает, что вспышка была обнаружена почти сразу. Образцы вируса, выделенные с рынка в Ухане, очень близки к таковым у самых ранних пациентов из Уханя; это подтверждает, что первые люди заразились именно там.

Неизвестно, как мутации, отличающие nCoV от штаммов, распространенных у животных, изменили его характеристики и изменили ли вообще. Возможно, перескок был несчастной случайностью, не сопровождавшейся никакими изменениями генетических характеристик вируса по сравнению с его предками у диких животных.

Что происходит сейчас?

Любые биологические объекты изменяются в ряду поколений из-за случайных мутаций. «Перескочив» в людей, вирус продолжил эволюционировать, «прорастив» ветвистое эволюционное древо уже в людях (рис. 2) К сожалению, сегодня известны лишь очень немногие «листья» этого древа. Самые новые последовательности из Уханя датируются 3 января, и 42 из 73 известных сегодня последовательностей получены снаружи Китая (при том, что 99% подтвержденных случаев — в Китае). Тем не менее, изучая древо, можно понять довольно много.

 двойной клик - редактировать изображение

Во-первых, можно установить скорость эволюции вируса. Для этого нужно сопоставить даты инфицирования с числом отличий последовательности вируса от «предковой». По текущим оценкам, скорость составляет порядка 10−3 замен на нуклеотид в год; это сопоставимо с таковой у других РНК-содержащих вирусов, например, у гриппа. Это может означать, что, как и в случае с гриппом, трудно будет создать универсальную вакцину, защищающую от всех штаммов, и вакцина потребует периодического обновления.

Во-вторых, можно проследить пути передачи. Первые надежные данные о передаче от человека человеку были получены именно таким образом. Можно задавать и более тонкие вопросы. Сколько людей заражается от членов семьи, сколько на работе, сколько в транспорте, сколько в больнице? Насколько эффективны карантинные меры? Как именно вирус переносится между странами? Можно пытаться узнать это по молекулярным данным. Это очень помогает с другими инфекциями, для которых таких данных больше, например с ВИЧ.

В-третьих, можно оценить скорость распространения вируса, а именно ставший знаменитым в последние дни показатель R0. R0, или базовое репродуктивное число, — это число людей, зараженных одним инфицированным за всё время течения болезни в полностью уязвимой популяции. Очевидно, что это ключевой показатель: если R0 меньше единицы, то эпидемия пойдет на спад, а если больше — то будет расти. Разные заболевания характеризуются очень разными значениями R0 — от 1,3 для гриппа до >10 для кори. Для ближайшего родственника nCoV — SARS — R0 составлял около 3 в начале вспышки и около 0,3 в ее конце.

Как измерить R0? Можно строить «традиционные» эпидемические модели и оценивать скорость роста числа заболевших. К сожалению, это трудно сделать точно. Начало вспышки трудно датировать, а в разгар эпидемии многие легкие случаи заведомо не диагностируются; даже скорость диагностики тяжелых случаев может зависеть от пропускной способности системы здравоохранения, например от доступности тест-систем.

Эволюционные методы дают другие способы оценить скорость распространения эпидемии. Основная идея такова: общие статистические характеристики древа, например отношения длин ветвей вблизи корня к длинам ветвей около листьев, должны зависеть от того, сохраняет ли патоген приблизительно постоянную численность или же она растет или убывает. Это связано с тем, что длина ветвей древа, построенного по выборке из некой популяции, определяется численностью этой популяции: чем меньше популяция, тем быстрее «встречаются» друг с другом ветви, поскольку повышается вероятность, что две случайно выбранные особи оказываются близкими родственниками. Растущая вспышка вируса определяется относительно короткими ветвями у корня и относительно длинными — около листьев.

Применение такого анализа к nCoV дает оценки R0 в районе 2 или 3). Конечно, здесь тоже много предположений, многие из которых заведомо неверны: например, что выборка анализируемых последовательностей более-менее случайна и что на вирус не действует отбор. Но данные, полученные с использованием разных методов, взаимно подтверждают друг друга и позволяют сказать, что R0, по-видимому, находится где-то в диапазоне от 2,2 до 3,3.

Что может быть дальше?

В последние дни появились работы, в которых моделируется развитие эпидемии при различных параметрах. Важно понимать, что эти модели — не прогнозы. Во-первых, точность, с которой оценен R0, совершенно недостаточна. При R0 ~3 в отсутствие каких-либо мер и без предсуществующего иммунитета вспышка, например, в десятимиллионном городе будет быстрой и острой, будет иметь пик через два-три месяца, и на пике будут одновременно инфицированы десятки процентов населения. Если же R0 ниже двух, то пик растянется на много месяцев и будет смазан (рис. 3).

 двойной клик - редактировать изображение

Во-вторых, практически невозможно моделировать такие факторы, как разработка вакцин, эффективность имеющихся лекарственных препаратов (которая остается пока практически неизвестной), а также принимаемые меры по снижению скорости распространения.

В-третьих, сам по себе R0 мало что говорит о том, насколько серьезной окажется эпидемия: R0 для риновирусов, вызывающих обыкновенную простуду, составляет ~6, однако они не являются столь существенной проблемой мирового здравоохранения. Ключевые параметры, остающиеся неизвестными, — это доля тяжелых и смертельных случаев. Составит ли она ~0,1% от общего числа инфицированных, как для ежегодного сезонного гриппа, 2,5%, как для испанки, или 10%, как для SARS? Эти сценарии будут очень разными. Имеющиеся сегодня данные не позволяют сказать, какой из них сбудется. Источник

Подписывайтесь на наш канал в Яндекс.Дзен!

Нажмите «Подписаться на канал», чтобы читать «Завтра» в ленте «Яндекса»

Комментарии Написать свой комментарий

К этой статье пока нет комментариев, но вы можете оставить свой

1.0x